

Hydrocarbon volume prediction performance in the Dutch subsurface & & the role of Survival Bias

Guido Hoetz

Presentation to KNGMG-Noord 1.12.2020

content

- Introduction
- Look-back at historic prediction performance
- Survival Bias in E&P
- Synthetic Portfolio modelling
 - Evaluation uncertainty
 - Portfolio maturity
- Results & Conclusions

Introduction

 Overpromise/underdelivery is a problem in the entire E&P industry. Especially in the area of hydrocarbon volumetric predictions. ebn

• Well known amongst insiders. Yet literature is scarce.

Suggested causes are:

- Evaluation Tool Bias (e.g. inadequate seismic workflow)
- Cognitive Bias (e.g. individual motivational bias)
- Survival (= Selection) Bias

Evaluation Tool Induced Bias:

ebn

Example: seismic mapping based on simplified velocity model

Cognitive Bias

Extensively studied in behavioral science e.g:

- Ancoring Bias
- Optimism Bias

Cognitive Bias

Extensively studied in behavioral science e.g:

- Ancoring Bias
- Optimism Bias

ebn

"White Elephants in a rosy picture wearing pink glasses"

classic fallacy of survival bias

So, where should you put the armour?

ebn

The commanders saw it clearly: Put the armour where the most bullet holes are. That's where the planes are getting shot the most.

Shot impact damage as observed from many returning bombers

Volumes & risks

GIIP:	Gas Initially In Place
RF:	Recovery Factor
UR:	Ultimate Recovery
POS:	Probability of Success
* MSV:	Mean Success Volume
= EXP:	Expectation Volume

Statements

- Business cases for E&P drilling projects are based on pre-drill estimates.
- Companies that are more skilled in evaluation will prognose closer to actuals.
- Companies with better prognosis track-record will be more successful in the long run.

Volume predictions based on subsurface models

Based on multiple workflows incl. static models, dynamic models, welltests...

Volumes prediction performance: lookback

Volume prognosis error over time

Recoverable volume prognosis error plot per year with trendline. (averaging window: 50 wells)

Key parameters affecting volumetric estimates

- Porosity
- Reservoir depth
- Gas-water contact
- Column height
- Water saturation
- Net to Gross

Porosity

Top reservoir depth

Column height

Key parameters affecting volumetric estimates

Bias to overpromise everywhere, but is it significant?

Bias: statistical significance

Parameter	Overprediction	T-test* result
Sw	21%	Significant
PORO	2%	Not significant
GRV	18%	Significant
NRV	26%	Significant
N/G	2%	Barely significant
Pressure	4%	Significant

ebn

GRV and Sw most biased parameters

*Two tail paired T-test after Fosfold et al., 2000

Selection Bias: the concept

- 1. Hypothetical prospect portfolio: 50 prospects: each containing 1 bcm GIIP.
- 2. Explorers have *imperfect data* to asses prospect volumes and build portfolio.

- 3. Portfolio ranked in order of *attractiveness* (volume is key driver!)
- 4. Only most "attractive" part of portfolio drilled.

Synthetic portfolio modelling

- Create synthetic portfolio of prospects
- Each prospect characterized by two parameters:
 - EXP (risked UR)
 - Unit Technical Cost (UTC)
- Prospect value* determined by EXP & UTC
- Prospect ranking based on highest value
- Only part of portfolio being tested

Synthetic portfolio modelling 1

each prospect characterised by volume (~EXP) and cost (~UTC)

- 50 equivalent prospects with EXP =1 and UTC = 1
- noise in data (STD= 0.1)
- Prospect value prognoses stochastically modelled
- Drill top 50% ->
- Act. = 25 BCM
- Prog. = 27 BCM
 - 2 BCM overpromise (bias~ 8%)

Synthetic portfolio modelling 2a

each prospect characterised by volume (~EXP) and cost (~UTC)

50 prospects with varying EXP and UTC

Realisation values

generated stochastically with mean EXP=1, mean UTC=1

Numbered according to ranking on *prospect value*

Synthetic portfolio modelling 2b

each prospect characterised by volume (~EXP) and cost (~UTC)

50 prospects with varying EXP and UTC

Realisation values

generated stochastically with mean EXP=1, mean UTC=1

Prognosis values

generated stochastically around realisation

Synthetic portfolio modelling 2c

each prospect characterised by volume (~EXP) and cost (~UTC)

50 prospects with varying EXP and UTC

Stochastic assessment for prognosis

Ranking based on **prognosis** value (*not actual value!*)

Selection Bias results

based on 100 simulated synthetic portfolios

Synthetic portfolio modelling: Portfolio clustering

high clustering & high uncertainty can lead to > 40% bias!

Conclusions

- Well look-back analysis reveals significant volume prediction bias. Delivery 58% only.
- Prediction bias can have multiple causes: e.g. Tool Bias, Cognitive Bias and Selection Bias
- Prediction bias can be modelled based on the concepts from selection bias
- Biased predictions are unavoidable where sampling (drilling) is not random
- More mature portfolios lead to increased selection bias
- Predictions in other businesses (e.g. geothermal) are also expected to show selection bias especially when ranking is based on uncertain subsurface parameters (e.g. permeability)
- Don't count on luck; T.I.N.A. for thorough technical work!

Acknowledgements:

Martin Ecclestone Henk Koster Linda Janssen Vincent van der Kraan

More details:

Drilling Portfolio Performance and the role of Survival Bias in volume estimates EAGE Annual Conference 8-11 Dec 2020 (paper 1058; on www.earthdoc.org)